Domain decomposition method for Maxwell’s equations: Scattering off periodic structures
نویسندگان
چکیده
منابع مشابه
Domain decomposition method for Maxwell's equations: Scattering off periodic structures
We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to det...
متن کاملThe factorization method for inverse elastic scattering from periodic structures
This paper is concerned with the inverse problem of scattering of time-harmonic elastic waves from rigid periodic structures. We establish the factorization method to identify an unknown diffraction grating profile (periodic surface) from knowledge of the scattered compressional or shear waves measured on a line above the periodic surface. Near-field operators are factorized by selecting approp...
متن کاملA simple preconditioned domain decomposition method for electromagnetic scattering problems
We present a domain decomposition method (DDM) devoted to the iterative solution of time-harmonic electromagnetic scattering problems, involving large and resonant cavities. This DDM uses the electric field integral equation (EFIE) for the solution of Maxwell problems in both interior and exterior subdomains, and we propose a simple preconditioner for the global method, based on the single laye...
متن کاملCompare Adomian Decomposition Method and Laplace Decomposition Method for Burger's-Huxley and Burger's-Fisher equations
In this paper, Adomian decomposition method (ADM) and Laplace decomposition method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equations. In ADM the algorithm is illustrated by studying an initial value problem and LDM is based on the application of Laplace transform to nonlinear partial differential equations. In ADM only few terms of the expansion are required t...
متن کاملBivariate Spline Method for Navier-Stokes Equations: Domain Decomposition Technique
On Schwarz's domain decomposition methods for elliptic boundary value problems, submitted for publication, 1996. 6. M. J. Lai and P. Wenston, Bivariate spline method for numerical solution of steady state Navier-Stokes equations over polygons in stream function formulation, submitted, 1997. Bivariate spline method for numerical solution of time evolution Navier-Stokes equations over polygons in
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2007
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2007.04.017